

Recent Results from Belle

XiaoLong Wang (Virginia Tech)

(for the Belle Collaboration)

Brookhaven Forum 2015

October 7, 2015

KEKB and Belle

Physics targets:

CP Violation, Spectroscopy, τ Physics,

New Physics beyond Standard Model,

...

Belle data samples:

On resonances:

 $\Upsilon(5S)$: 121 fb⁻¹ $\Upsilon(4S)$: 711 fb⁻¹

 $\Upsilon(3S)$: 3 fb⁻¹ $\Upsilon(2S)$: 25 fb⁻¹ $\Upsilon(1S)$: 5.8 fb⁻¹

Off reson./scan:

 \sim 100 ${
m fb^{-1}}$ Total: \sim 1000 ${
m fb^{-1}}$

Outline

- **1** Search for NP in $B \rightarrow D^{(*)} \tau v$
- 2 $A_{FB}(B \to X_s \ell^+ \ell^-)$ with sum of exclusives
- $oldsymbol{e} e^+e^-
 ightarrow bar{b}$ inclusive & exclusive

Search for NP in $B \rightarrow D^{(*)} \tau v$

- Process with third generation quarks and leptons
- In models with charged Higgs bosons their couplings are proportional to lepton mass, hence NP effects are enhanced for τ .

New Physics could change:

- Branching fraction
- \blacksquare τ polarizaion
- Effect could be different for D and D*

BaBar result shows 3.4σ away from SM: PRL109, 101802(2012); PRD88, 072012(2013)

Experimental challenge:

2 (hadronic τ decay) or 3 (leptonic τ decay) undetected neutrinos

$$R = \frac{\mathscr{B}(B \to D\tau^-\bar{\nu}_\tau)}{\mathscr{B}(B \to Dl^-\bar{\nu}_l)}, \quad R^* = \frac{\mathscr{B}(B \to D^*\tau^-\bar{\nu}_\tau)}{\mathscr{B}(B \to D^*l^-\bar{\nu}_l)}; \quad I = e, \quad \mu$$
 (1)

X.L. Wang(VT) Resent results@Belle 3 / 24

Search for NP in $B \rightarrow D^{(*)} \tau v$

■ Statistics: 772 × 10⁶ BB̄ pairs

Selection:

- B_{tag} is reconstructed using hadronic full reconstruction algorithm, which includes 1149 B final states ($\varepsilon_{rec}^{B^+}=0.3\%$ and $\varepsilon_{rec}^{B^0}=0.2\%$). Additional requirements on purity of B_{tag} sample preserves $\sim 85\%$ of signal $\bar{B}\to D^{(*)}\tau\nu$ decays
- τ is reconstructed in the leptonic decays $\tau \to evv, \mu vv$, so the signal and normalization modes have the same final particles \to reduces systematic uncertainty of $R^{(*)}$
- In the events with B_{tag} we select $D^{(*)}I$ ($D^+I^-, D^0I^-, D^{*+}I^-, D^{*0}I^-$), I = e or μ among remaining trackgs and clusters:

 - $-0.2 < M_{\text{miss}}^2 < 8.0 \text{ (GeV}/c^2)^2, M_{\text{miss}}^2 = (P_{beam} P_{B_{tag}} P_{D^{(*)}} P_I)^2;$
 - \blacksquare $q^2 > 4 \text{GeV}^2/c^2$, $q^2 = (P_B P_{D^{(*)}})^2$; \rightarrow suppress semileptonic B decays

arXiv: 1507.03233. Accepted by PRD.

X.L. Wang(VT) Resent results@Belle 4 / 24

Search for NP in $B \rightarrow D^{(*)} \tau v$

 $M_{\rm miss}^2$ range is split into two regions:

- 1 $M_{\rm miss}^2 <$ 0.85 (GeV/ c^2) 2 : populated by events of $B \to D^{(*)} e \nu_e, \ D^{(*)} \mu \nu_\mu$
- 2 $M_{\rm miss}^2 > 0.85~({\rm GeV}/c^2)^2$: enriched by $B \to D^{(*)} \tau v_{\tau}~(\tau \to e v_e v_{\tau},~\mu v_{\mu} v_{\tau})$

Simultaneous fit to both regions.

- To constrain $B \to D^{(*)}ev$, $D^{(*)}\mu v$ yields, fit on M_{miss}^2 (peak at zero).
- Region(2), some bkg like $B \to D^{**} l v$ has $M_{\rm miss}^2$ and yield similar to τ signal. So fit this region on neural network output (O_{NB}) .

Fit results

$$\mathit{O}'_{\mathrm{NB}} = \ln rac{\mathit{O}_{\mathrm{NB}} - \mathit{O}_{\mathit{min}}}{\mathit{O}_{\mathit{max}} - \mathit{O}_{\mathrm{NB}}}$$

arXiv: 1507.03233.

Results and NP in $B \rightarrow D^{(*)} \tau v$

- $R(D) = 0.329 \pm 0.060 \pm 0.022$; $R(D)_{2HDM} = 0.590 \pm 0.125$
- $R(D^*) = 0.301 \pm 0.039 \pm 0.015; R(D^*)_{2HDM} = 0.241 \pm 0.007$

Belle result compatible with 2HDM type II model in the region around $tan\beta/M_{H^{\pm}}=0.45~(\text{GeV}/c^2)^{-1}$ and zero.

arXiv: 1507.03233.

X.L. Wang(VT) Resent results@Belle 7 / 24

And the q^2 Spectrum

- The D^+I^- and D^{0-} samples and the $D^{*+}I^-$ and D^{*0-} samples are combined to increase statistics.
- NP: Type-II 2HDM result with $tan\beta/M_{H^{\pm}} = 0.5 \text{ (GeV}/c^2)^{-1}$
- \blacksquare A χ^2 test shows that both hypotheses are compatible with Belle data.

arXiv: 1507.03233.

8 / 24

X.L. Wang(VT) Resent results@Belle

$A_{FB}(B \to X_s \ell^+ \ell^-)$ with sum of exclusives

• Forward-backward Asymmetry (A_{FB}) can be expressed with three Wilson coefficients (C_7, C_9, C_{10}) .

coefficients
$$(C_7, C_9, C_{10})$$
.
$$A_{FB} \equiv \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)} \propto -\text{Re}\left[\left(2\frac{C_7^{eff}}{m_b^2} + \frac{q^2}{m_b^2}\frac{C_9^{eff}}{C_{10}^{eff}}\right)C_{10}^*\right]$$

$$l^+l^-: e^+e^- \text{ or } \mu^+\mu^-$$

$$X_S := K^{\pm}/K_S + \text{up to } 4\pi \text{ (at most } 1\pi^0)$$

[K] : K , K_S

[$K\pi$]: $K\pi$, $K_S\pi$, $K\pi^0$, $K_S\pi^0$ [$K2\pi$]: $K2\pi$, $K_S2\pi$, $K\pi\pi^0$, $K_S\pi\pi^0$

 $[K3\pi]: K3\pi, K_S3\pi, K2\pi\pi^0, K_S2\pi\pi^0$

 $[K4\pi]: K4\pi, K_S4\pi, K3\pi\pi^0, K_s3\pi\pi^0$

 $M_{X_s} < 2.0 \; \mathrm{GeV/c^2}$

- $b \rightarrow s\ell^+\ell^-$ is studied to search for New Physics.
- 10 flavor specific states for A_{FB} measurement ($\sim 50\%$ of total).
- lacktriangle Neural network for suppression of continuum and $B\bar{B}$ semileptonic bkg.
- Veto Charmonium: J/ψ and $\psi(2S)$.

arXiv: 1402.7134

Signal extraction

- Divide data into 4 q^2 regions to perform a fit.
- Correct A_{FR}^{raw} to A_{FR}^{true}.

$$\begin{aligned} \textit{A}_{FB}^{true} &= \alpha^{\mu\mu} \times \textit{A}_{FB}^{raw,\mu\mu} \\ &= \alpha^{ee} \times \beta \times \textit{A}_{FB}^{raw,ee} \end{aligned}$$

 α : scale factor due to rec. efficiency β : correction due to different

Charmonium veto range.

 $-\alpha$ is derived using MC with various sets of C_7 , C_9 , C_{10} .

X.L. Wang(VT)

Resent results@Belle

Fitting for $A_{FB}(B \to X_{S}\ell^{+}\ell^{-})$

■ Unbinned maximum likelihood fit to M_{bc} for each q^2 bin: positive/negative $\cos \theta$, $e^+e^-/\mu^+\mu^-$.

Dominant systematics
 -α correction, peaking bkg.

- 1 Leakage from $B \rightarrow J/\psi(\psi(2S))X_s$ veto.
- 2 Double mis ID from $B \to D^{(*)} n\pi$.
- 3 Swapped mis ID in $B \rightarrow J/\psi(\psi(2S))X_s$.

Result of $A_{FB}(B \to X_s \ell^+ \ell^-)$

- \blacksquare A_{FB} are consistent with SM.
 - The deviation of the 1st bin $(q^2 < 4.3 \text{GeV}^2/c^2)$ is 1.8 σ .
 - Exclude $A_{FB} < 0$ at $q^2 > 10.2 \text{ GeV}^2/c^2$ at 2.3 σ .
- First measurement of inclusive A_{FR} with sum-of-exclusives

$e^+e^- ightarrow bar{b}$ inclusive & exclusive

Previous results on Z_b states Z_b^{\pm} observed in five different modes:

PRL108, 122001(2012)

Z_b⁰ Results:

$$\langle \mathbf{M}_1 \rangle = 10609 \pm 7 \pm 6 \, \mathbf{MeV}$$

Consistent with Z_b±

- $M_{Z_{b1}} M_B M_{B^*} =$ $2.4 \pm 2.1 \text{ MeV}/c^2$
- $M_{Z_{h2}} M_{B^*} M_{B^*} =$ $1.8 \pm 1.8 \text{ MeV}/c^2$

$$egin{aligned} R_b &= rac{\sigma(e^+e^- \! o \! b ar b)}{\sigma^0(e^+e^- \! o \! \mu^+ \mu^-)} \ \mathscr{F} &= |A_{nr}|^2 \! + |A_r \! + \! A_{5S}e^{i\phi_{5S}}f_{5S} \! + \! A_{6S}e^{i\phi_{6S}}f_{6S}|^2 \end{aligned}$$

Procedure:

- Count hadronic events
- 2 Subtract scaled cont. (udsc)
- 3 Subtract ISR $\Upsilon(1S, 2S, 3S)$
- 4 Do efficiency correction
- 5 Divided by lum & $\sigma^0(\mu^+\mu^-)$
- No ISR corr.; no VP corr.
- Fit with constant width BW in small energy range.
- Need better model to fit

Agree with BaBar [PRL102,012001(2009)] with improved precision $E_{cm} = 10.54 - 11.20 \text{ GeV}$, 5 MeV step for > 300 points, 3.9 fb⁻¹ in total

arXiv: 1501.01137

X.L. Wang(VT) Resent results@Belle 15 / 24

$$e^+e^-
ightarrow \pi^+\pi^- \Upsilon(nS)$$

- tag $\Upsilon(nS) \rightarrow \mu^+\mu^-$ and select $\pi^+\pi^-$, fit to $|A_{5S} + e^{i\phi}A_{6S}|$
- $\blacksquare \Upsilon(5S)$
 - $M = (10891.9 \pm 3.2^{+0.6}_{-1.5}) \text{ MeV}/c^2$

$$\Gamma = (53.7^{+7.1}_{-5.6}^{+7.1}_{-5.4}^{+0.9} \text{ MeV})$$

- $\blacksquare \Upsilon(6S)$
 - $M = (10987.5^{+6.4+2.2}_{-2.5-2.1}) \text{ MeV}/c^2$
 - $\Gamma = (61^{+9+19}_{-2-20} \text{ MeV})$
- Results agree with previous measurements
- Also agree with fit with *R_b* reasonably well
- Still room for improvement

arXiv: 1501.01137

$$e^+e^-
ightarrow \pi^+\pi^-h_b(nP)$$

- Reconstruct $\pi^+\pi^-$, require π^+/π^- recoil mass in Z_b region: $10.59 < M_{\rm miss}^2(\pi) < 10.67 \ {\rm GeV}/c^2$
- check the $\pi^+\pi^-$ recoil mass for $h_b(nP)$

arXiv: 1508.06562

$e^+e^- ightarrow \pi^+\pi^- h_b(nP)$

 $A_n f(s) |BW_{5S} + a \cdot e^{i\phi} BW_{6S} + b \cdot e^{i\delta}|$

$\Upsilon(5S)$

- $M = (10884.7^{+3.2+8.6}_{-2.9-0.6}) \text{ MeV}/c^2$
- $\Gamma = (44.2^{+11.9+2.2}_{-7.8-15.8}) \text{ MeV}$

$\Upsilon(6S)$

- $M = (10998.6 \pm 6.1^{+16.1}_{-1.1}) \text{ MeV}/c^2$
- $\Gamma = (29^{+20+2}_{-12-7}) \text{ MeV}$

$$a = 0.64^{+0.37+0.13}_{-0.11-0.0}$$

- Resonant parameters agree with those from $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(nS)$
- $e^+e^- \rightarrow \pi^+\pi^-h_b(nP)$ at the same level as $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$
- 1st obs. of $\Upsilon(6S) \rightarrow \pi^+\pi^-h_b(nP)$

arXiv: 1508.06562

Z_b in $e^+e^- ightarrow \pi^+\pi^-h_b(nP)$

- Events mainly from Z_b intermediate states, not clear if only one Z_b or both.
- Belle II will tell us.

■ An evidence of $\Upsilon(6S) \to Z_b(\to h_b\pi)\pi$.

arXiv: 1508.06562

Summary

- $B \rightarrow D^{(*)} \tau v$ have been studied at Belle
 - Results on R and R^* agree with both SM expectation and BaBar results.
 - It is also consistent with 2HDM type-II model in the region around $tan\beta/M_{H^\pm}=0.5~({\rm GeV}/c^2)^{-1}$
- $A_{FB}(B \rightarrow X_s \ell^+ \ell^-)$ with sum-of-exclusives
 - Exclusive $A_{FB} < 0$ at $q^2 > 10.2 \text{ GeV}^2/c^2$ at 2.3 σ .
 - First measurement of inclusive A_{FB} with sum-of-exclusives
- $ightharpoonup e^+e^-
 ightarrow bar{b}$ inclusive & exclusive
 - improved knowledge on $\Upsilon(5S)$ and $\Upsilon(6S)$
 - lacksquare $\sigma(e^+e^- o \Upsilon(nS)\pi^+\pi^- ext{ and } \sigma(e^+e^- o h_b(nP)\pi^+\pi^- ext{ are similar.}$
 - An evidence of $\Upsilon(6S) \rightarrow Z_b(\rightarrow h_b\pi)\pi$.

Thank you!

Backup

Neural Network

One network per reconstruction sample

- · Signal: tau signal
- Background: D**, wrong charge CF, wrong lepton, D_s, rest

Input variables:

- M² miss
- E_{ECL}: sum of energies of clusters not assigned to B_{sig} or B_{tag}
 Most powerful variable
 - → Most powerful variable
- Momentum transfer q^2 and lepton momentum $p_\ell^{\,*}$
 - \rightarrow Correlated with M^2_{miss}
- Number of unassigned π^0 with $|S_{yy}| < 5$
- Cos of angle between D^(*) momentum and vertex direction
- Decay channel identifiers

$B \rightarrow D^{(*)} \tau \nu$ projection: $E_{\rm ECL}$

